Chemistry Honors – Metal Reactivities Lab	Name:	
	Date:	Period:
Do all chemicals react with each other? Can chemic metals more reactive than others? In this lab, you wis solutions of these metals' ions. Then, the metals will observe whether or not a reaction occurs. Your observeactivities, and to form an "activity series" of metals	Ill make initial obse I be added to the sol rvations will be use	rvations of 4 metals, and lutions, and you will
Procedure:		
Go to the following website:		
http://www.chem.iastate.edu/group/Greenbowe/so	ections/projectfold	er/animationsindex.htm
Scroll down to the <u>Electrochemistry</u> heading, and cli	ck on <u>click here to v</u>	work the activity series.
Click Start , and then OK to the pop-up box.		
Click on Activity 1 .		
1. Write down observations (colors) of the so	olutions in the data	table.

- 2. Choose one metal, write down initial observations (color of the metal), and then immerse them into the solutions. Remove the metals from the solutions, and record the results (both the changes in the metals *and* the changes in the solutions). Write NR for no reaction, if nothing happens.
- 3. Repeat the step above with the other 3 metals.

Click on **Activity 2**, and follow the same procedures with the new metals and solutions.

To get an idea of what type of chemical reaction occurred, and why the metals seemed to "grow thicker" when a reaction occurred, go back to Activity 1, and choose the $\underline{\text{molecular scale reaction}}$ button, place the Mg metal in the Cu(NO₃)₂ solution, and click $\underline{\text{start}}$.

Metal Reactivities L	⊿ab – DAT <i>A</i>	١
-----------------------------	--------------------	---

N	lame:	

Activity 1

Observations solutions	of				
Observations Metals	of	Mg(NO ₃) ₂	$Zn(NO_3)_2$	Cu(NO ₃) ₂	$AgNO_3$
	Cu				
	Mg				
	Zn				
	Ag				

Activity 2

Observations Solutions	\rightarrow				
↓		Fe(NO ₃) ₂	$Zn(NO_3)_2$	$Cu(NO_3)_2$	$Pb(NO_3)_2$
	Fe				
	Zn				
	Cu				
	Pb				

Question: Why do the metals seem to "grow" when a reaction occurs? Write answer below.

Analys	sis Ou	estions.
Allarys	019 QU	icsuons.

1. Which metal reacted with the <u>most</u> solutions in Activity 1? In Activity 2?

2. Which metal reacted with the fewest solutions in Activity 1? In Activity 2?

3. List the four metal elements from each experiment in order of <u>most to least reactive</u>. You will make two lists here – one from Activity 1 and another from Activity 2.

Activity 1	Activity 2		
1.	1.		
2.	2.		
3.	3.		
4.	4.		

4. The above lists represent two "Activity Series of Metals". We want to combine our results from both activities, into a single Activity Series of Metals.

Hint: In an Activity Series, if element A is listed above element B, then A will react with a solution of B's ions.

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.

5. The Statue of Liberty was constructed of copper metal. Based on your observations from this lab, explain why copper was chosen, and also suggest a better choice. Why do you think this "better choice" wasn't chosen?

6. Which metals in this lab, would be most likely found in a "free" or elemental state in nature?