Calorimetry)

- Used to determine the specific heat

of a material

unknown metal - known mass and Ti.

Metal and water have same Tr

 $Q = \sum_{w} \sum_{w} e^{-gy} \qquad Q_{w} = -Q_{m}$ $Q_{w} + Q_{m} = Q$ $M_{w} C_{w} \Delta T_{w} + M_{m} C_{m} \Delta T_{m} = Q$

Example 4:

A calorimeter is filled with 200 g of water at 10°C. An unknown material of mass 80 g at 85°C is dropped into the calorimeter. The mixture reaches an equilibrium temperature of 20°C. Find the **specific heat** of the material. The specific heat of water is 4186 J/kg°C.

Challenge Problem #1

A calorimeter is filled with 500g of water at 15 C. A piece of copper metal of mass 200 g and a temperature of 90 C is placed inside the calorimeter. What is the equilibrium temperature?

Specific heat copper = 387 J/kg C Specific heat water = 4186 J/kg C

$$2093(T_{F}-15) = -77.4(T_{F}-90)$$
 $2093T_{F}-31395 = -77.4T_{F}+36361$
 $T_{F}=17.7^{\circ}C$

Challenge Problem #2

A 250 g block of copper at 88 C and a 300 g block of aluminum at 75 C are dropped in a calorimeter with 750 g of water at 5 C. The specific heat capacity of copper is 387 J/kg C, the specific heat capacity of aluminum is 899 J/kg C and the specific heat capacity of water is 4186 J/kg C. Determine the equilibrium temperature reached by the mixture.

$$Q_{W} + Q_{c_{1}} + Q_{A_{1}} = Q_{c_{1}}$$

$$Q_{W} = (-Q_{c_{1}}) + (-Q_{A_{1}})$$

$$(.75)(4186)(T-5) = -[.25(387)(T-88)] + [.3(699)(T-75)]$$

$$3|39.5T - |5697.5| = -96.75T + 6514 + 2967T + 20227$$

$$T = |2.7°C$$