Ch. 12 Sound

Sound is a longitudinal wave (the vibration of the air molecules is parallel to the direction the wave is moving)

Produced through areas of **compression** and **rarefaction**.

NOTE: "C" stands for compression and "R" stands for rarefaction

Compression - region of a longitudinal wave where density and pressure are at a maximum

Rarefaction - region of a longitudinal wave where density and pressure are at a minimum

A vibrating tuning fork is capable of creating such a longitudinal wave. As the tines of the fork vibrate back and forth, they push on neighboring air particles.

- **A.** The forward motion of a tine pushes air molecules horizontally to the right (COMPRESSION)
- **B.** The backward retraction of the tine creates a lowpressure area allowing the air particles to move back to the left (**RAREFACTION**)

Sound is also a displacement wave. When the air molecules are compressed or rarefracted, they are at a maximum distance from the equilibrium

Frequency determines the pitch.

<u>Pitch</u> is a measure of how high or low a sound is perceived to be.

$$v = f \lambda$$

The speed of sound is dependent on temperature and the medium through which it travels.

at
$$0^{\circ}_{\mathbf{C} \text{ Vair}} = 331 \text{ m/s}$$

at $25^{\circ}_{\mathbf{C} \text{ Vair}} = 346 \text{ m/s}$
at $25^{\circ}_{\mathbf{C} \text{ Vwater}} = 1490 \text{ m/s}$

Sound travels faster in water because the particles are closer together in a liquid than a gas.

Higher temperature means more particle collisions = faster movement of sound

Intensity

Intensity is the rate at which energy flows through a unit area perpendicular to the direction of the wave.

$$I = P$$

$$A = Power (W)$$

$$A = area (m2)$$

For a spherical wave:

$$I = \frac{P}{4\pi r^2}$$

r = distance from the source (m)

Example 1:

A speaker emits sound at 80 W. Find the intensity at a distance of 10 m.

$$I = \frac{P}{4\pi r^2} = \frac{80}{4\pi (10)^2}$$

$$I = 0.0637 \text{ W/m}^2$$

Example 2:

At what distance from a 50 W speaker is the intensity at the threshold of pain (1 $\mbox{W/m}^2$)

$$T = \frac{50}{4\pi r^2}$$

$$I = \frac{50}{4\pi r^2}$$

$$I = \frac{50}{4\pi r^2}$$

$$I = \frac{1.99m}{100}$$

Decibels

$$\beta = 10 \log \left(\frac{I}{I_0}\right)$$

Decibels are a dimensionless unit that describes that ratio of two intensities of sound.

 β = loudness in decibels

I = intensit

 $I_0 = 10^{-12} \text{ W/m}^2$ = threshold of hearing

dB

Example 3:

Find β for the threshold of hearing.

$$D = 10 \log \left(\frac{10^{-12}}{10^{-12}} \right) = 0 dB$$

Find β for the threshold of pain.

$$B = 10 \log \left(\frac{1}{10^{-12}} \right) = 120 dB$$

Example 4:

Sound intensity of a machine is 1 x 10⁻⁵ W/m². Calculate the decibel level of this machine.

Example 5:

The decibel level of sound is 50 dB at a distance of 10 m from the source. Find the intensity of the sound and the power of the source.

$$5 = \log_{10} \left(\frac{I}{10^{-12}} \right)$$

$$10^{5} = \frac{I}{10^{-12}}$$

$$I = |x|0^{-7} \text{ W}|_{m^{2}}$$

$$|x|0^{-7} = \frac{P}{A} = \frac{P}{4\pi(10)^{2}} \rightarrow P = 1.3 \times 10^{-4} \text{ W}$$