Specific Heat Laboratory Activity

Background:

Transfer of heat or heat flow always occurs in one direction – from region of higher temperature to a region of lower temperature – until some final equilibrium temperature is reached. The transfer of heat energy can be detected by measuring the resulting temperature change, ΔT , calculated by subtracting the initial temperature from the final temperature.

In this experiment, heat is transferred from a hot metal sample to a colder water sample. Each metal causes the temperature of water to increase to a different extent. This means that each metal must have a differing ability to absorb energy and release the energy to the water causing the temperature to rise. The ability of any material to contain heat energy is called the material's *heat capacity*. The measure of heat capacity, or the quantity of heat needed to raise the temperature of one gram of a substance by one degree Celsius at a constant pressure is termed *specific heat*, and is represented by the symbol *c*.

Substance	Specific Heat (in J/g °C)
Aluminum	0.899
Copper	0.385
Lead	0.129
Tin	0.222
Zinc	0.385
Iron	0.448
Nickel	0.444
Water	4.186

Procedure:

- 1. Fill a beaker ¾ full of tap water. Place on hot plate at high heat until a rolling boil is achieved.
- 2. Weigh a metal sample on the electronic balance. Record in grams.
- 3. Place the metal sample in a boiling water bath for approximately 5-10 minutes to be sure the sample is 100°C.
- 4. Fill a Styrofoam calorimeter with cool tap water. Pour the water from the calorimeter into a beaker.

 Use the electronic balance to find the mass in grams of the water. Record in grams.
- 5. Transfer tap water back into calorimeter. Use the temperature probe to find the initial temperature of the water in Celsius.
- 6. Using tongs, lift the heated metal sample from the water bath and carefully place it inside the calorimeter. Quickly place the lid on top.
- 7. In one of the lid's holes insert a glass stir rod. Stir the mixture slowly and constantly. In the other hole, insert the temperature probe. Make sure the probe is not touching the metal.
- 8. Record the highest temperature the water reaches.

Data:

mass of water in calorimeter:	(g)
initial temperature of water:	(°C)
highest temperature reached by water:	(°C)
mass of unknown metal:	(g)
initial temperature of metal:	(°C)
final temperature of metal:	(°C)

Calculations:

1. Calculate the specific heat of the sample. Identify the metal.

2. Calculate the amount of heat gained by the water.

3. Calculate the amount of heat lost by the sample.