| Name: | Date: | Block: | |---|--------------------------------|---------------------| | Stoichiometry Conversions Practice | | | | Directions: Answer the questions below using th | ne stoichiometry road map. You | MUST SHOW ALL WORK. | 1 $$C_3H_8$$ + 5 O_2 \rightarrow 3 CO_2 + 4 H_2O 1. How many moles of CO₂ are produced from 3.2 moles of C₃H₈? 2. How many liters of CO₂ can be produced from 13.4 liters of oxygen gas? 3. If I have 34.6 grams of H_2O , how many grams of O_2 did I use? 4. How many moles of H₂ are made from 6.6 moles of H₂SO₄? 5. If given 95 grams of Fe, how many moles of $Fe_2(SO_4)_3$ are produced? 6. How many grams of H₂are produced from 227 grams of H₂SO₄? ## 1 Li_3N + 3 H_2O \Rightarrow 1 NH_3 + 3 LiOH 7. Determine the mass in grams of LiOH produced when 0.94 grams of Li₃N reacts in the equation above. 8. How many liters of water are needed to produce with 7.39 moles of NH₃? 9. How many moles of Li₃N are needed to produce 63.8 grams of NH₃? 1 $$Sb_2O_3$$ + 3 C \rightarrow 2 Sb + 3 CO 10. How many moles of carbon are needed to produce 13.9 moles of antimony? 11. If I have 50 grams of carbon then how many grams of Sb₂O₃ are needed to react? 12. Determine the moles of CO produced when 1.4 grams of Sb_2O_3 are present. ## 6 Li + 1 N₂ \rightarrow 2 Li₃N 13. How many grams of nitrogen gas (N₂) are needed to completely react with 67.3 g Li? 14. If I have 3.4 moles of Li₃N then how many moles of lithium did I use? 15. How many grams of Li₃N are produced from 6.8 moles of nitrogen gas (N₂)?