Polyatomic Ions

Polyatomic ions contain two or more different atoms (polyatomic means "many atoms"). Here are some common examples:

- a. **ammonium ion**, **NH**₄⁺ (the only positive polyatomic ion you need to know)
- b. "ATE" ions: contain an atom bonded to several oxygen atoms:

Nitrate = NO_3 Phosphate = PO_4 Sulfate = SO_4 Carbonate = CO_3 Acetate = CO_3 Chlorate = CIO_3

c. "ITE" ions: remove one oxygen from the "ATE" ion and keep the same charge:

Nitrite = NO_2^- Phosphite = PO_3^{3-} Sulfite = SO_3^{2-} Chlorite = CIO_2^-

d. Other common complex ions:

Hydroxide = OH^{-} Cyanide = CN^{-}

Ionic Compounds Containing Polyatomic Ions

As you've already learned, ionic compounds are formed by the combination of **a positive ion** (cation) and a **negative ion** (anion). This is the same when dealing simple ions or complex ions. Be careful to note, however, that complex ions are **grouped together** and should not be separated. In other words, don't ever separate the sulfate ion, SO₄²⁻ into sulfur and oxygen. **If it's written as a group, keep it as a group!**

Since complex ions come in groups, things can get tricky when using subscripts. As a result, we use **parentheses** to separate the ion from the subscript:

If we need two sulfates in a compound, we write: $(SO_4)_2$. If we need three nitrates in a compound, we write: $(NO_3)_3$.

And, just as before, the **net charge** of the compound must be **zero**. For a salt containing sodium ion, Na^+ , and nitrate, NO_3^- , the ratio would be 1:1 since the positive and negative charges cancel out. Therefore, the formula is $NaNO_3$ and is called sodium nitrate. (Note: no parentheses are necessary here).

For a salt containing calcium ion, Ca^{2+} , and nitrate, NO_3^- , the ratio must be 1:2 (one calcium ion for every two nitrates). So, the formula would be $Ca(NO_3)_2$.

Writing Ionic Formulas - Polyatomic Compounds

Fill in the correct symbols and charges of the ions and then write the correct formulas in the corresponding boxes.

IONS	carbonate	nitrite	sulfate	phosphate	chlorite	hydroxide
sodium						
beryllium						
aluminum						
hydrogen						
strontium						
barium						
potassium						
magnesium						