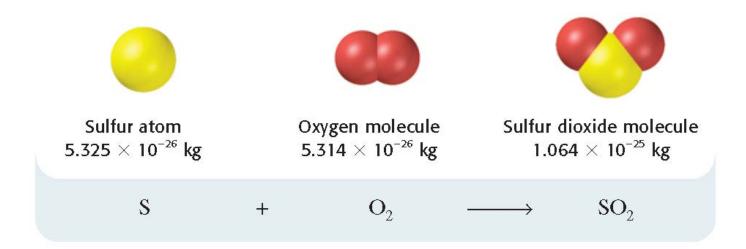
Development of Atomic Theory

- Democritus
- John Dalton
- JJ Thomson
- Robert Millikan
- Ernest Rutherford
- James Chadwick

Democritus



- 1st person to propose that matter was not infinitely divisible
- Called the small pieces of matter "atomos"
- These "atomos" are unique to the specific substance
- Aristotle had his own theory and because of his influence Democritus' idea was rejected

Law of Conservation of Mass

Mass can neither be created nor destroyed in a physical or chemical change

$$Mass_{reactant} = Mass_{products}$$

Dalton's Atomic Theory

- 1. All matter is composed of extremely small particles called atoms that cannot be **subdivided**, created, or destroyed. (smallest particle of an element that retains the chemical property of that element).*
- 2. Atoms of a given element are **identical in size and mass**; atoms of different elements differ in size and mass*
- 3. Atoms of different elements combine in simple wholenumber ratios to form chemical compounds.
- 4. In chemical reactions, atoms are combined, separated, or rearranged

* later disproven

The Laws of Definite and Multiple Proportions

Law of Definite Proportions

In a sample of any chemical compound, the masses of the elements are always in the same proportions.

The formula tells you the ratio of atoms in the compound. A ratio of atoms can be related to a ratio of mass:

% by mass =
$$\underline{\text{Mass}}_{\text{element}}$$
 x 100 Mass compound

 The Law of Definite Proportions relates to Dalton's theory because Dalton said that atoms combine in whole number ratios.

<u>Sodium Chloride</u> – NaCl

Sodium = 39.34%

Chlorine = 60.66%

100.0 g sample of NaCl

$$\underline{60.66 \text{ g}} \text{ x } 100 = 60.66\%$$

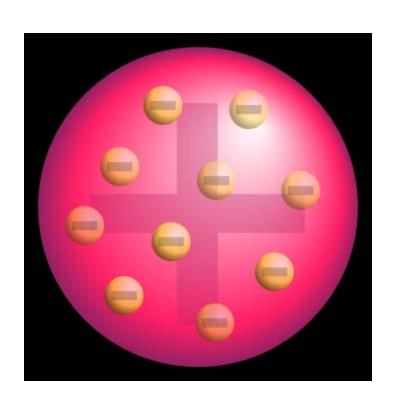
450.0 g sample of NaCl

$$177.03 \text{ g} \times 100 = 39.34\%$$

$$272.97 g \times 100 = 60.66\%$$

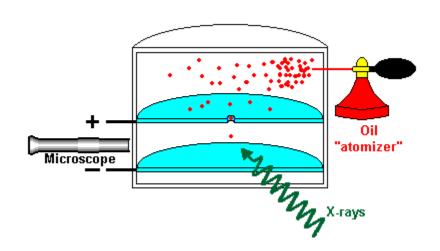
Law of Multiple Proportions

When two different compounds are formed by a combination of the same elements, their masses combine in small whole number ratios


Name of compound	Description	As shown in figures	Formula	Mass O (<i>g</i>)	Mass N (<i>g</i>)	Mass O(g) Mass N(g)
Nitrogen monoxide	colorless gas that reacts readily with oxygen		NO	16.00	14.01	$\frac{16.00 \text{ g O}}{14.01 \text{ g N}} = \frac{1.14 \text{ g O}}{1 \text{ g N}}$
Nitrogen dioxide	poisonous brown gas in smog		NO_2	32.00	14.01	$\frac{32.00 \text{ g O}}{14.01 \text{ g N}} = \frac{2.28 \text{ g O}}{1 \text{ g N}}$

J.J. Thomson

• Discovered the <u>electron</u> from his work with cathode ray tubes.


J.J Thomson's Plum-pudding Model (Chocolate Chip Cookie Model)

Robert Millikan

- Measured the charge of an electron (-1) and helped find the mass of an electron with his oil drop experiment
- Mass of an electron = 9.11 x 10⁻³¹ kg (1/1840th the mass of the hydrogen atom)

Ernest Rutherford Nuclear Atomic Model

- Proved Thomson's plum-pudding model incorrect
- Gold Foil Experiment Discovered the nucleus.
- Positively charged nucleus at the center of the atom contain positively charged protons and the electrons revolve around the nucleus

James Chadwick

- Colleague of Ernest Rutherford
- Discovered the neutron.
- Neutrons help stabilize the protons in the nucleus.
- Neutrons are about the same size as protons. But have no charge

Atomic Number

- Atoms of the same element all have the same number of <u>protons</u>. Protons identify an element.
- The atomic number (Z) is the number of protons (p+) of each atom of that element.

of protons = # of electrons in a neutral atom

Isotopes

- **Isotopes** are atoms of the same element that have different masses.
- The isotopes of a particular element all have the same number of protons and electrons but <u>different numbers of neutrons</u>.

Mass Number

- Represents the sum of the protons and neutrons in the nucleus of a specific isotope.
- Hyphen notation: The mass number is written with a hyphen after the name of the element.

uranium-235

• <u>Symbol</u>: The superscript indicates the mass number and the subscript indicates the atomic number.

Relative Atomic Mass

- The carbon-12 atom is used as a standard by scientists to compare units of atomic mass.
 carbon-12 = 12 atomic mass units, or 12 amu.
 - (each neutron and proton is approximately 1 amu)
- The atomic mass of any atom is determined by comparing it with the mass of the carbon-12 atom.

Average Atomic Mass

 A weighted average of all the naturally occurring isotopes of an element

```
Avg atomic mass = (isotope 1 mass x abundance 1) + (isotope 2 mass x abundance 2) + (isotope 3 mass x abundance 3) ...
```

Example: Find the atomic mass of boron using the following isotopes.

```
boron-10: mass = 10.01 amu, % abundance = 19.80 %
```

boron-11: mass = 11.01 amu, % abundance = 80.20 %

Answer:

```
(10.01 \times .1980) + (11.01 \times .8020) = 10.81 \text{ amu}
```