172 Capacitance

capacitance- the ability of a conductor
to store energy in the form
of electrically separated charges

Think of a capacitor like a spring. When the spring is stretched, it stores potential elastic energy similar to how a capacitor will store electric potential energy.

In both cases, work must be done for the energy to be stored (ie: work to stretch the spring).

Capacitors also help to stabilize the flow of electrons so that the supply of energy is continuous. (see online diagram)

Notes - Capacitance

No net charge -Both plates are neutral

During charging Electrons leave the one
plate, traveling through
the wire to the other
plate

Net charges plates have opposite charges

Notes - Capacitance

* Capacitance is dependent of the geometry (shape) of the capacitor.

For parallel plates:

$$C = \frac{\varepsilon_0 A}{d}$$

A = area of the capacitor d = distance between plates

Example 1:

A capacitor, when connected to a 15V supply, carries a charge of 5 μ C. Find the capacitance of the capacitor.

$$C = \frac{Q}{\Delta V} = \frac{5E-6}{15} = 3.3E-7F$$

Example 2:

A parallel plate capacitor of area 0.015 m² and a plate separation of 0.02 m is connected to a 9V supply.

a) Find the capacitance.

$$C = \frac{E_0 A}{d} = \frac{(8.85E-12)(0.015)}{0.02}$$

$$C = \frac{E_0 A}{d} = \frac{(8.85E-12)(0.015)}{0.02}$$

b) Find the charge stored on the capacitor.

$$C = \frac{G}{\Delta V} \rightarrow Q = C \Delta V$$

= $(6.64e^{-12})(9V) = 5.97 \times 10^{-11} C$

Example 3:

A rectangular plate of sides $5 \text{ cm} \times 4 \text{ cm}$ is separated by a distance of 0.5 cm from the same rectangular plate.

a) Find the capacitance.
$$C = \frac{E_0 A}{d} = \frac{(8.85E - 12)(.05 \times .04)}{(.05 \times .04)} = \frac{(3.5 \times 10^{-12} \text{ F})}{3.5 \times 10^{-12} \text{ F}}$$

b) The capacitor above is connected to a 1.5 V battery. Find the charge stored on the capacitor.

$$C = \frac{Q}{\Delta V} \rightarrow Q = C\Delta V$$

$$= (3.5 \text{E-12})(1.5 \text{V}) = 5.31 \times 10^{-12} \text{C}$$

Potential Energy Stored in a capacitor:

Find the energy stored in a 5 μF capacitor connected to a 9V supply

$$PE = \frac{1}{3} C (\Delta V)^{2}$$

$$= \frac{1}{3} (5\epsilon - 6) (9)^{2}$$

$$= \frac{1}{3} (5\epsilon - 6) (9)^{2}$$

$$= \frac{1}{3} (5\epsilon - 6) (9)^{2}$$

Homework (pg. 607 Practice B)

- 1. A 4.00 μF capacitor is connected to a 12 V battery
 - a) What is the charge on each plate of the capacitor?
 - b) If this same capacitor is connected to a 1.50 V battery, how much electrical potential energy is stored?
- 2. A parallel-plate capacitor has a charge of 6.0 μ C when charged by a potential difference of 1.25 V.
 - a) Find its capacitance.
 - b) How much electrical potential energy is stored when this capacitor is connected to a 1.5 V battery?
- 3. A capacitor has a capacitance of 2.00 pF.
 - a) What potential difference would be required to store 18.0 pC?
 - b) How much charge is stored when the potential difference is 2.5 V?
- 4. You are asked to design a parallel-plate capacitor having the capacitance of 1.00 F and a plate separation of 1.00 mm. Calculate the required surface area of each plate. Is this a realistic size for a capacitor?